Atmospheric Research - NCAR & UCAR
photo Home Our Organization Community Tools News Center Our Research Education Libraries Community Tools


News Release


For Journalists
David Hosansky, head of Media Relations

Cheryl Dybas, NSF Public Affairs, 703-292-7734

UCAR Communications—General inquiries
Yvonne Mondragon

Digital Image Library

Tipsheet: Climate Change

Will it look anything like The Day After Tomorrow?

May 24, 2004

BOULDER - The release of the movie The Day After Tomorrow is spurring discussion about global climate change with its depiction of giant storms and plummeting temperatures abruptly menacing the planet. But are the movie's climate scenarios plausible?

At the National Center for Atmospheric Research (NCAR), scientists who study the impact of rising industrial emissions on the world's climate say it is impossible for an ice age to strike within days, as happens in the movie. They warn, however, that climate change may have significant consequences for society in coming decades.

Humans are affecting global climate through emissions of carbon dioxide, methane, and other greenhouse gases that trap sunlight in the atmosphere and warm the planet. Emitted from the burning of fossil fuels and other sources, many greenhouse gases remain in the atmosphere for decades or even centuries. Sulfates and other pollutants that comprise tiny particles can have a different effect-often blocking sunlight and cooling temperatures-but their impacts are more localized and shorter-lasting. Researchers at NCAR and other institutions have found that global temperatures are likely to rise by 1.7 to 4.9 degrees Celsius (3.1 to 8.9 degrees Fahrenheit) between 1990 and 2100. Such an increase in temperatures may spur droughts, extreme storms, and related events including wildfires, vegetation changes, and a rise in sea levels.


Driven by temperature and salinity variations, large ocean currents convey heat from the equator to the upper latitudes and cold back toward the equator. This constant movement, known as thermohaline circulation, includes such well-known currents as the Gulf Stream, which moderates the climate of northern Europe. Some scientists have speculated that global warming could weaken the thermohaline circulation and possibly leave some regions relatively cooler. (Illustration courtesy CLIVAR.)

As dramatic as real-world climate change is likely to be, it would differ from the climate change depicted in The Day After Tomorrow in several important ways:

Movie scenario. Temperatures in New York City plummet from sweltering to freezing in hours.

Actual climate change. Temperatures in parts of the world could drop, but not nearly as rapidly or dramatically as portrayed in the movie. In a warmer world, additional rain at middle and high latitudes, plus melt from glaciers, will add more fresh water to the oceans. This could affect currents such as the Gulf Stream that transport heat north from the tropics and might result in parts of North America and Europe becoming relatively cooler. Even if this were to occur, it would take many years or decades because oceans move heat and cold much more slowly than the atmosphere. (Some ocean changes, however, such as the periodic warming of Pacific Ocean waters known as El Niño, may affect regional weather patterns within weeks.)

Movie scenario. A massive snowstorm batters New Delhi as an ice age advances south.

Actual climate change. Although human-related emissions might cool some parts of Earth by affecting ocean currents, they cannot trigger a widespread ice age. That is because increased levels of greenhouse gases will increase temperatures across much of the planet. In addition, Earth's orbit is in a different phase than during the peak of the last major ice age 20,000 years ago, and the Northern Hemisphere is receiving more solar energy in the summer than would be associated with another ice age.

Movie scenario. Tornadoes strike Los Angeles and grapefruit-sized hail falls on Tokyo.

Actual climate change. Research has shown that climate change may lead to more intense hurricanes and certain other types of storms. In a hotter world, evaporation will happen more quickly, providing the atmosphere with more fuel for storms. In fact, scientists have found this is already happening with rain and snowfall in the United States. But even when scientists run scenarios on the world's most powerful supercomputers, they cannot pinpoint how climate will change in specific places or predict whether Los Angeles or other cities will face violent weather.

NCAR has several experts on past climate shifts and future climate change available to speak with journalists:

Lisa Dilling, 303-497-2885

Specialties: As a member of NCAR's Environmental and Societal Impacts Group, Dilling focuses on how policy makers can better incorporate scientific research into their decisions-especially when it comes to climate. She is an expert on the movement of carbon dioxide between the ocean, atmosphere, and land.

Carrie Morrill, 303-497-1375

Specialties: A paleoclimatologist, Morrill researches past eras when the climate of a large region or the entire planet shifted within a few decades or centuries. She is particularly interested in the mid-Holocene climate change, when rainfall lessened across parts of Africa and Asia about 4,000 years ago and possibly contributed to the demise of some civilizations.

Susanne Moser, 303-497-8132

Specialties: Moser is an expert in the human dimensions of climate change, including the potential impacts of climate on society and how policymaking can reduce the risks from climate change to society. Much of her work focuses on climate change impacts on coastal communities and ecosystems and the potential for environmental degradation.

Bette Otto-Bliesner, 303-497-1723

Specialties: The head of NCAR's paleoclimate group, Otto-Bliesner investigates past climates and climate variability, with special emphasis on the current interglacial period; the Last Glacial Maximum, which occurred about 21,000 years ago; and the Last Interglacial, which occurred about 125,000 years ago. She is particularly interested in comparing climate models and paleoclimate data to interpret climate responses to changes in solar radiation and greenhouse gases.

Kevin Trenberth 303-497-1318

Specialties: An internationally recognized authority on climate change and climate variability, including El Niño, Trenberth was a lead author of the 2001 climate change report by the Intergovernmental Panel on Climate Change (IPCC). He studies the likely impact of climate change on storms and other types of severe weather, and he also analyzes global weather observations and tracks the cycle of water between the atmosphere, land, and oceans.

Tom Wigley, 303-497-2690

Specialties: One of the world's foremost experts on using computer models to study climate change, Wigley has served as lead author in each of the six major IPCC scientific reviews of the greenhouse problem. He has published on a diverse collection of topics, including data analysis; climate impacts on agriculture and water resources; paleoclimatology; and modeling of climate, sea level, and the carbon cycle.

The National Center for Atmospheric Research and UCAR Office of Programs are operated by UCAR under the sponsorship of the National Science Foundation and other agencies. Opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any of UCAR's sponsors.

Untitled Document